
DEVELOPING OPEN
SOURCE

SOFTWARE FOR
VARIOUS

HARDWARE
ARCHITECTURES

ELIZABETH K.

JOSEPH, IBM

@PLEIA2

HASHNODE OPEN

SOURCE

SYMPOSIUM,

OCTOBER 2021

ELIZABETH K. JOSEPH

• Linux Systems Administrator turned Developer

Advocate for IBM Z

• Author of books on Ubuntu Linux and

OpenStack

• Contributor to open source communities for 20

years

• @pleia2 on Twitter, Instagram

AND I WAS VERY
FOCUSED ON
CLOUDS

LET'S GO BACK IN TIME

ONCE UPON A
TIME, THERE WERE
MANY
ARCHITECTURES

THEN WE KINDA
CONSOLIDATED
ON X86

NOW THERE ARE
MANY AGAIN!

KIND OF, THEY NEVER REALLY WENT AWAY ;)

WHY AM I HERE
TALKING ABOUT
ARCHITECTURES?

• I [pre-COVID] worked out

of the IBM Silicon Valley

Lab

• It's in the cows and jack

rabbits part of San Jose

• And it has a big,

underground, datacenter

IBM Z – S390X /
ZARCHITECTURE

IBM POWER /
OPENPOWER

AND SO MUCH ARM

YOUR PHONE - ARM

RASPBERRY PI
- ARM

COMPILING SOFTWARE 101 – ARCHITECTURE

Today the commodity
architecture is 64-bit x86,

based on instructions
developed in the early

1980s.

As a result, most developers
don't pay much attention to

architecture! But we are
seeing an increasing need

to do so as non-x86
architectures become more

common.

COMPILING
SOFTWARE

101 – CODE

• At the lowest levels, classic* computing still only

understands 0 and 1. That's what all those billions of tiny

transistors are doing.

• Compilers and interpreters take human-readable code

that you write and convert it to something the computer

can understand, ultimately a series of 0s and 1s.

• The code you see is just the first step in the process as far

as the computer is concerned.

* What is beyond Classic Computing? Quantum!

COMPILING SOFTWARE 101 – OPEN SOURCE

When something is "open source" you have access to the human-
readable code, it's available in the open.

You then compile that code to create a binary. This
code must be compiled for the respective architecture
you're targeting since it needs to be built for that CPU
hardware (x86, s390x, ARM, Power, etc).

HIGHER VERSUS LOWER-LEVEL LANGUAGES

It has very little to do with how "hard" the language is, and more to do with how

much abstraction is between your code and the hardware.

Lower-level is closer to the hardware, and may have optimizations: Assembler,

C, C++

Higher-level is further from the hardware, and often doesn't care where it's run:

Python, Node.js

WHAT'S A DEVELOPER TO DO?

Well, you could do nothing, carry on!

Especially if you're working with higher-level languages or SDKs for your

platform, you may not run into issues (this is often the case with mobile app

development).

WHAT'S A DEVELOPER TO DO?

• Learn more about architecture-specific components of your language

• Be mindful about your usage and don't use them unless you have a specific reason to do

so

• Avoid making assumptions about hardware-specific things like pointer sizes or

byte ordering

• Document the usage, so it's easier for anyone who may wish to port your code in the

future

WHAT'S A DEVELOPER TO DO?

• Avoid "tricks" with CPU-specific instructions and caching

• Some developers over-optimize their code and drop to Assembler

• Modern compilers are already pretty smart!

• Today's tricks may not even work on tomorrow's compiler, or x86 system

• Don't make assumptions about hardware enumeration or memory regions

WHAT'S A DEVELOPER TO DO?

• Try running your code on another architecture!

• A Raspberry Pi 4 (ARM) kit with 4G of RAM will run you about $100, and several major

Linux distributions will run on it

• You can sign up for an s390x Linux virtual machine for free for 120 days with in the IBM

LinuxONE Community Cloud: https://linuxone.cloud.marist.edu/

RESOURCES

IBM Z
Developer resources for building your open source app for

Linux on IBM Z

https://developer.ibm.com/blogs/developer-resources-for-

building-your-open-source-app-for-linux-on-ibm-z-and-

linuxone/

https://developer.ibm.com/blogs/developer-resources-for-building-your-open-source-app-for-linux-on-ibm-z-and-linuxone/

RESOURCES

POWER
Learning path: Port your open source applications to Linux on

Power

https://developer.ibm.com/series/learning-path-port-your-

app-to-lop/

https://developer.ibm.com/series/learning-path-port-your-app-to-lop/

RESOURCES

Raspberry Pi

Documentation (including Technical Information about the

CPUs)

https://www.raspberrypi.com/documentation/

https://www.raspberrypi.com/documentation/

RESOURCES
Apple M1
Developer Transition Kit (DTK)

https://developer.apple.com/programs/universal/

https://developer.apple.com/programs/universal/

GOING DOWN THE RABBIT HOLE

• Learn about the following key terms

• RISC verses CISC

• ISA (Instruction Set Architecture)

• Conditional execution

• Hardware registers (interface between hardware and software)

• Hardware threads and hyperthreading

• CPU cache and the Translation Lookaside Buffer (TLB)

• Endianness (memory ordering, big- verses little-endian)

• ...probably a lot more, but this is a good start!

CONTACT

Elizabeth K. Joseph

@pleia2 on Twitter and Instagram

lyz@princessleia.com | lyz@ibm.com

mailto:Lyz@princessleia.com
mailto:lyz@ibm.com

