
Building Debian Packages

Package your software
the quick and easy way

with CDBS

The Contestants

GNU AutotoolsPOSIX Makefile

Python
Distutils

Perl
MakeMaker

PHP
PEAR
PECL

Ruby
setup.rb

extconf.rb

KDE 3
GNU Autotools

Qt
Qmake

GNOME
GNU Autotools

GNUstep
Makefile

Haskell
HBuild

OCaml
Makefile

Java
Apache Ant

Why Bother?

� Integration
� Paths

� Maintenance
� Upgrading
� Clean removal
� Multiple installations

� Security
� Package signatures
� debsums

What is a Debian Package?

� Not just a bunch of files to unpack
� Meta-data
� Tools & mechanisms

� Source packages
� .orig.tar.gz Unmodified upstream source
� .diff.gz Debian-specific changes
� .dsc Debian source control info

� Binary packages
� .deb Debian Package

Package-Building Tools

� build-essential
� make GNU Make
� dpkg-dev Debian Package Building Tools
� gcc & g++ C & C++ compilers
� libc6-dev C Standard Library headers

� cdbs Common Debian Build System
� debhelper Automates usual packaging tasks
� dh_make Debianizes a source directory
� devscripts Convenience scripts for packagers

Laying the Foundation

� Get your source, put it in a directory named
sourcename-version/

� Set environment variables for name & email

� Debianize!
dh_make --cdbs --createorig

export DEBFULLNAME=�Deborah Netch�
export DEBEMAIL=�debbienetch@hacker.net�

Package Data in debian/

� changelog History of the package
� control Meta-data about packages
� copyright License information
� rules Makefile to build binary packages
� watch Location to check for updates
� Maintainer scripts

� preinst, postinst, prerm, postrm, and so on...

Debhelper Files in debian/

� cron.d A job to register with cron
� dirs List of directories to create
� docs List of documentation files
� emacsen-* EMACS site-lisp files
� packagename-default Variables for init script
� packagename.doc-base Online help page
� init.d init script
� manpage.* Manual page
� menu Entry for the Debian menu
� README.Debian Debian-specific ReadMe

Describing the Source

� Source: Name of the source package
� Maintainer: Your name <email address>
� Build-Depends: Packages needed for building

� devscripts includes dpkg-genbuilddeps
fakeroot dpkg-genbuilddeps

Describing the Packages

� Package: Name of a package
� Architecture: Compatible platforms
� Description: Brief synopsis (< 80 characters)

An extended description of the package which gives
the user an impression of the package's purpose. It
should describe the package's capabilities, intended
use, and relation to other parts of the system.
.
The description should be word-wrapped to 80
characters and every line must begin with a space. A
line with only a space then a period will be shown as a
blank line.

Declaring Dependencies

� Depends: Absolutely needed to run me
� devscripts includes dpkg-depcheck

� Recommends: Usually needed for me to function
� Suggests: Would enhance my functionality
� Pre-Depends: Needed during my installation
� Conflicts: Cannot be installed alongside me
� Replaces: Remove this when I am installed
� Provides: I can perform this capability

� Track your changes with changelog
� Add information about the current version:

� Make changes to your package:

� Upgrade to a new version of the source:

debchange --append

debchange --increment

fakeroot uupdate ../sourcename-newversion/

Keeping Up-to-Date

� rules Makefile used to create the packages
� Build the source:

� Make the binary packages:

� Clean up:

� All-in-one

debian/rules build

fakeroot debian/rules binary

fakeroot debian/rules clean

dpkg-buildpackage -rfakeroot

Building the Packages

Tweaking the Result

� Root directory for each binary package is
debian/packagename/

� DEB_DESTDIR variable in rules
� What if the build system doesn't install files

in the right place?
� binary-post-install/packagename runs after

build system's install step (ie. �make install�)
binary-post-install/packagename::

mv wrong_place/file $(DEB_DESTDIR)/right_place/file
rm $(DEB_DESTDIR)/this/does/not/belong/here

rules for Makefile Packages

� Default Makefile rules

� Define targets for make:

� If needed, set environment variables
DEB_MAKE_ENVVARS = CFLAGS="-fpic"

DEB_MAKE_BUILD_TARGET = all
DEB_MAKE_CLEAN_TARGET = clean

DEB_MAKE_CHECK_TARGET = check
DEB_MAKE_INSTALL_TARGET = install DESTDIR=$(DEB_DESTDIR)

#!/usr/bin/make -f

include /usr/share/cdbs/1/rules/debhelper.mk
include /usr/share/cdbs/1/class/makefile.mk

control for Autotools Packages

Build-Dependencies
� autotools-dev Support files for Autotools

and possibly...

� autoconf configure script generator
� automake Makefile generator
� libtool Library support script

� Many projects can use the default rules:

� To specify flags for the configure script:

� In rare cases it may be necessary to update
autoconf, automake, and/or libtool

rules for Autotools Packages

#!/usr/bin/make -f

include /usr/share/cdbs/1/rules/debhelper.mk
include /usr/share/cdbs/1/class/autotools.mk

DEB_CONFIGURE_EXTRA_FLAGS = --enable-foo --with-bar

DEB_AUTO_UPDATE_AUTOCONF
DEB_AUTO_UPDATE_AUTOMAKE
DEB_AUTO_UPDATE_LIBTOOL

control for Perl Module
Packages

� Architecture: all
� Section: perl
� Package: libsomething-perl

� Foo::Bar � libfoo-bar-perl

Build-Dependencies
� perl Interpreter & core modules

Dependencies
� ${perl:Depends} Automatic Perl dependencies

rules for Perl Module Packages

� Replace default Makefile rules...

...with Perl Module rules

� To specify flags for Makefile.PL script:

include /usr/share/cdbs/1/class/makefile.mk

include /usr/share/cdbs/1/class/perlmodule.mk

DEB_MAKEMAKER_USER_FLAGS = --with-something

control for Python Packages

� Architecture: all
� Section: python
� Package: python-something

� Foo � python-foo
� PyBar � python-pybar

Build-Dependencies
� python all dev� � Build files for all Python versions

� python central� Compiles modules automatically
Continued...

control for Python Packages

� For the source package, add field:
XS-Python-Version: all

� �current� or specific version(s) can also be used
� For each Python binary package, add field:
XB-Python-Version: ${python:Versions}

Dependencies
� Depends: ${python:Depends}
� Provides: ${python:Provides}

rules for Python Packages

� Before include lines, set DEB_PYTHON_SYSTEM

� Replace default Makefile rules...

...with Python rules

� If build script isn't setup.py, specify it

include /usr/share/cdbs/1/class/makefile.mk

include /usr/share/cdbs/1/class/python-distutils.mk

#!/usr/bin/make -f

DEB_PYTHON_SYSTEM = pycentral

DEB_PYTHON_SETUP_CMD = install.py

Continued...

rules for Python Packages

� If needed, set arguments for the build script:

� Exclude packages that should not be
compiled:

DEB_PYTHON_CLEAN_ARGS = -all
DEB_PYTHON_BUILD_ARGS = --build-base=�$(DEB_BUILDDIR)/there�
DEB_PYTHON_INSTALL_ARGS_ALL = --no-compile
DEB_PYTHON_INSTALL_ARGS_foo = --force

DEB_PYTHON_PACKAGES_EXCLUDE = python-something-doc

control for Ruby Packages

� Architecture: all
� Section: interpreters �

� Package: libsomething-ruby
� Foo � libfoo-ruby
� RubyBar � libbar-ruby

Build-Dependencies
� ruby-pkg-tools Ruby Packaging Tools

control for Ruby Packages

� Make a package for each version of Ruby:
� Package: libsomething-ruby1.8

� Depends: libruby1.8
� Package: libsomething-ruby1.9

� Depends: libruby 1.9
� Make a �dummy� package

� Package: libsomething-ruby
� Depends: libsomething-ruby1.8
� Add a blank line and this text to the Description:
 This is a dummy package depending on the library for the current default
 version of Ruby.

rules for Ruby Packages

� Replace default Makefile rules...

...with either setup.rb rules...

...or extconf.rb rules

� If needed, specify a different build script

� If needed, set arguments for the build script

include /usr/share/cdbs/1/class/makefile.mk

include /usr/share/ruby-pkg-tools/1/class/ruby-setup-rb.mk

include /usr/share/ruby-pkg-tools/1/class/ruby-extconf-rb.mk

DEB_RUBY_SETUP_CMD := install.rb

DEB_RUBY_CONFIG_ARGS = --site-ruby=$(DEB_RUBY_LIBDIR)

control for Qmake Packages

Build-Dependencies
� Either libqt4-dev... Headers for Qt 4
� ...or libqt3-mt-dev Headers for Qt 3

� Set alternatives for the correct Qt version

� lrelease, lupdate, moc, qmake, uic

update-alternatives --config application

rules for Qmake Packages

� Replace default Makefile rules...

...with Qmake rules
include /usr/share/cdbs/1/class/makefile.mk

include /usr/share/cdbs/1/class/qmake.mk

control for KDE Packages

� Section: kde

Build-Dependencies
� Same build-dependencies of Autotools rules
� kdelibs4-dev Headers for KDE Libraries
� Possibly -dev packages for KDE modules

Dependencies
� If possible, depend on individual KDE

applications instead of whole KDE modules

rules for KDE Packages

� Replace default Autotools rules...

...with KDE rules

� If there are errors about �unsermake�,
remove the unsermake package

include /usr/share/cdbs/1/class/autotools.mk

include /usr/share/cdbs/1/class/kde.mk

Local Repository

� Keep your packages in a local repository so
they can be managed with APT
� Make a directory & put the the packages there

� Generate an APT index

� Edit /etc/apt/sources.list

mkdir /usr/local/debian
mv *.deb /usr/local/debian/

deb file:/usr/local/debian ./

dpkg-scanpackages /usr/local/debian /dev/null | \
gzip - > /usr/local/debian/Packages.gz

More Information

� Debian Documentation
� General & User Information

� Debian Project Documentation doc-debian
� The Debian Free Software Guidelines are a part of the Debian

GNU/Linux Social Contract
� Debian Reference debian-reference

� Developer Information
� CDBS documentation found in /usr/share/doc/cdbs
� Debian New Maintainers' Guide maint-guide
� Debian Policy Manual debian-policy
� Debian Developer's Reference

developers reference�

More Information

� Documentation about other examples
� Perl

� Debian Perl Policy debian-policy
� Python

� Debian Python Policy
� Debian Wiki: DebianPython/NewPolicy
� python-central HOWTO

� Ruby
� Debian/Ruby Extras Team: Ruby Package Tools
� Ruby Policy (Draft) ruby

Building Debian Packages

Package your software
the quick and easy way

with CDBS

� Aim: Walk though the creation of Policy-compliant
Debian packages in the easiest possible way
using the Common Debian Build System (CDBS)

� Audience: Primarily for people who don't want to
become Debian Maintainers
� Administrators wanting to ease maintenance of

custom software
� Hackers wanting to distribute their works
� Debian enthusiasts who want to learn more

The Contestants

GNU AutotoolsPOSIX Makefile

Python
Distutils

Perl
MakeMaker

PHP
PEAR
PECL

Ruby
setup.rb

extconf.rb

KDE 3
GNU Autotools

Qt
Qmake

GNOME
GNU Autotools

GNUstep
Makefile

Haskell
HBuild

OCaml
Makefile

Java
Apache Ant

� CDBS has pre-made rules to build a Debian
package from many different build systems
� For binary-only installers, use checkinstall

� Makefile & Autotools package types will be
covered in this presentation

� If time permits, any package type from the middle
row may be covered

� Package types from the bottom row can be built,
but won't be covered

� If requested, an example can be walked-through
for any package types covered

Why Bother?

� Integration
� Paths

� Maintenance
� Upgrading
� Clean removal
� Multiple installations

� Security
� Package signatures
� debsums

� Why use dpkg instead of �make install�?
� Integrates with distribution

� Otherwise: /usr/local, /opt/, /usr/foo, $HOME?
� Easier to maintain

� Provides easy way to remove & upgrade
� No Cruft Left Behind

� Install on many machines without extra effort
� Easier to audit & secure

� APT signatures prevent corruption / tampering
� debsums verify integrity of installed files

� Why not just use checkinstall?
� Crude packages, often doesn't work

� Why not use alien?
� RPMs for other distributions won't work reliably

� Different paths & versions
� Distribution-specific scripts
� In worst case, can wreck your system!

What is a Debian Package?

� Not just a bunch of files to unpack
� Meta-data
� Tools & mechanisms

� Source packages
� .orig.tar.gz Unmodified upstream source
� .diff.gz Debian-specific changes
� .dsc Debian source control info

� Binary packages
� .deb Debian Package

� It's not a big truck!
� Meta-data for

� tools: dependencies, signatures
� users: classification, description, notices
� DDs: maintainer info, changes, bugs

� Tools & mechanisms to facilitate use &
development

� Source packages for developers
� .orig.tar.gz: �Upstream� source
� .diff.gz: Changes for Debian packaging
� .dsc: Source package meta-data & signature

� Binary packages for users
� �ar� archive containing files & meta-data
� Built procedurally from source, never by hand

Package-Building Tools

� build-essential
� make GNU Make
� dpkg-dev Debian Package Building Tools
� gcc & g++ C & C++ compilers
� libc6-dev C Standard Library headers

� cdbs Common Debian Build System
� debhelper Automates usual packaging tasks
� dh_make Debianizes a source directory
� devscripts Convenience scripts for packagers

� Some basic tools are needed to build any package
� build-essential

� make: Package built from source with Makefile
� dpkg-dev: Basic tools for handling packages
� gcc, g++, libc

� Debian archive is huge (4.0 �etch� > 18k pkgs!)
� DDs need tools to ease packaging

� Common Debian Build System (CDBS)
� Packaging rules for typical build systems

� debhelper
� Scripts called by the package build rules to

automate typical tasks
� dh_make

� Makes a Debian source package skeleton out
of �upstream� source

� devscripts
� Useful little scripts to perform typical actions

� Get your source
� Must be in directory named $srcname-$version
� This will be referred to as the source directory

� Enter the source directory
� All commands & paths will be relative from here

� Set name & email environment variables in shell
� Run dh_make

� ���createorig� makes a copy of the source
directory, which will become the .orig.tar.gz

� License can be specified with �-c gpl� or
�- copyright gpl��

� dh_make will create debian/ subdirectory &
example files
� Delete example files if not needed

Package Data in debian/

� changelog History of the package
� control Meta-data about packages
� copyright License information
� rules Makefile to build binary packages
� watch Location to check for updates
� Maintainer scripts

� preinst, postinst, prerm, postrm, and so on...

� All packaging info lives in debian/ subdirectory
� Files for dpkg

� changelog: packaging-specific changes
� Not same as upstream changelog!

� control: Meta-data for all packages to be built,
may have multiple package entries

� copyright: License (same as �upstream�)
� rules: Makefile used to build binary packages
� watch: URL to track updates by �upstream�
� Maintainer Scripts:

� Actions to perform during install/remove
� Their name determines when they are run

Debhelper Files in debian/

� cron.d A job to register with cron
� dirs List of directories to create
� docs List of documentation files
� emacsen-* EMACS site-lisp files
� packagename-default Variables for init script
� packagename.doc-base Online help page
� init.d init script
� manpage.* Manual page
� menu Entry for the Debian menu
� README.Debian Debian-specific ReadMe

� Debhelper provides mechanisms to handle typical
aspects of packaging
� compat: Debhelper version, ignore for now
� cron.d: Registers a job for cron
� dirs: Directories to create before install step
� docs: put in /usr/share/doc/$PKGNAME/

� Files here over certain size are compressed
� emacsen-*: site-lisp files to be compiled for various

emacs flavors during install
� $PKGNAME-default: Configuration variables for init

script, renamed to /etc/default/$PKGNAME
� $PKGNAME.doc-base: Page for Debian's centralized

documentation framework
� init.d: �init� script to be installed in /etc/init.d/
� manpage: �man� page to install

� nroff, or Docbook (auto-converted to nroff)
� menu: Registers entry in Debian menu
� README.Debian: readme for Debian users

� put in /usr/share/doc/$PKGNAME

� control file has several sections
� first section describes the source package

� Also sets default values for binary packages
� Source: name of the source package

� Same name as source directory
� Maintainer: You!
� Build-Depends: Any packages needed to build

the binary packages from the source package
� build-essential is assumed, don't include

1.What software is necessary can often be
found in the README or INSTALL files

2.Try building, see if it complains about missing
3.dpkg-genbuilddeps from devscripts

� Builds package, watching with strace
� Lists packages containing any files used in

the build process
� List is usually overkill, some packages are

obviously unnecessary

Describing the Packages

� Package: Name of a package
� Architecture: Compatible platforms
� Description: Brief synopsis (< 80 characters)

An extended description of the package which gives
the user an impression of the package's purpose. It
should describe the package's capabilities, intended
use, and relation to other parts of the system.
.
The description should be word-wrapped to 80
characters and every line must begin with a space. A
line with only a space then a period will be shown as a
blank line.

� All following sections describe binary packages
� Package: name of the package

� For single package, same as source package
� Architecture: package works on CPU or OS

� Use �all� for arch-independant packages
� Use �any� for arch-dependant packages

� Description:
� < 80 character description of the package
� Extended description underneath

� Describe package's purpose to user
� Should be obvious even to unfamiliar users

� Word wrap at 80 characters
� Each line begins with a space
� Make a blank line with only a period

� There are other fields, but these are required
ones

Declaring Dependencies

� Depends: Absolutely needed to run me
� devscripts includes dpkg-depcheck

� Recommends: Usually needed for me to function
� Suggests: Would enhance my functionality
� Pre-Depends: Needed during my installation
� Conflicts: Cannot be installed alongside me
� Replaces: Remove this when I am installed
� Provides: I can perform this capability

� Each package entry also has dependencies
� Depends: Must always be installed with package

� Usually the only kind you'll need
� debhelper auto-adds any shared libraries used
� Use dpkg-depcheck for a hint (see manpage)

� Recommends: Usually required for package
� Suggests: Makes package more useful
� Pre-Depends: (avoid if possible) Used by

package's install process, install this before
� Conflicts: Cannot be installed on the same

system as package (user asked to resolve)
� Replaces: This package will be auto-removed if

package is installed
� Often used with Conflicts so user doesn't have

to solve the conflict manually
� Provides: Package provides functionality of this

virtual package

� Track changes to packaging with changelog
� Makes it easier to work on in future

� Two kinds of version for package
� �upstream� version (changes to source)
� packaging version (changes to packaging)

� debchange (devscripts): helper for changelog
� Gives correct changelog format
� shell env vars:DEBFULLNAME,DEBEMAIL,EDITOR
� --append: add more info about current version
� --increment: You released your package, now

you want to make some changes to the
packaging and release an update

� uupdate (devscripts): helper for new version
� Argument is location of new version of source

(tarball or directory)
� Tries to guess version, or specify with �-v�
� Updates version in control & adds new

changelog entry

� All packages built from source using Makefile
called rules

� Various actions in rules
� build: runs build system's �build� step to

compile from source, etc.
� binary: runs build system's �install� step &

assembles the result into a package
� clean: cleans up files left over from other

actions

� dpkg-buildpackage does everything
� Builds
� Creates the binary packages
� Creates .orig.tar.gz, .diff.gz, .dsc
� Signs everything with your GPG key

� When build system does install step, files installed
to a fake root directory at debian/$PKGNAME
� When making multiple packages from one

source, each package has its own fake root
� Each package is generated from the files there
� rules has DEB_DESTDIR variable that points to

root directory of package being built/installed

� Sometimes the build system doesn't install files
into the right place
� �binary-post-install� rule runs specified

commands after build system's install step

� �dh_make --cdbs� defaults to CDBS Makefile rules
� Projects built using only a makefile

� �make�, �make install� ONLY
� Not often used, only for very simple projects
� Makefile is simplest build system, many other

CDBS rules are derived from it

� Targets can be specified for build system steps
� clean & build are optional, defaults used if unset
� install/check steps won't be run if target is unset

� If Makefile has no install rule, you need to
move the files to DEB_DESTDIR manually

� If needed, set environment variables for make

control for Autotools Packages

Build-Dependencies
� autotools-dev Support files for Autotools

and possibly...

� autoconf configure script generator
� automake Makefile generator
� libtool Library support script

� GNU Autotools is the most common build system
� �./configure�, �make�, �make install�

� �configure� generates Makefile, which is then
used to build

� CDBS can make a package from these with
almost no configuration

� autotools-dev: contains latest versions of files
used by �configure� script

� If source doesn't come with a configure script
� autoconf, automake, & libtool are the 3 main

parts of autotools
� Used to generate �configure� script & various

other files

� If configure script is found, default is Autotools
� Based on Makefile rules, options from Makefile

rules example can be used
� Don't need to specify �install� target

� For many projects, the 2-line default rules are
perfectly adequate

� If necessary, use DEB_CONFIGURE_EXTRA_FLAGS
to pass flags to the configure script

� A few projects need to run autoconf, automake, or
libtool first to generate the configure script
� Most projects do not, and running these can

break the build system, so don't add those lines
unless you know you absolutely have to!

� There are more options, but they're rarely used

control for Perl Module
Packages

� Architecture: all
� Section: perl
� Package: libsomething-perl

� Foo::Bar � libfoo-bar-perl

Build-Dependencies
� perl Interpreter & core modules

Dependencies
� ${perl:Depends} Automatic Perl dependencies

� Build Perl modules, like from CPAN
� Build system is Makemaker (�Makefile.PL�)

� Perl modules are interpreted, so arch is �all�
� Should probably go in the �perl� section
� The name of a package containing a Perl module

should be �lib�, followed by the module name.
followed by �-perl�, colons replaced with dash
� Important, needed by the packaging system!

� Build-depend on perl for interpreter and core
modules

� Debhelper can auto-determine dependency on
correct Perl interpreter package, depend on
${perl:Depends}

� Based on Makefile rules
� Runs Makefile.PL to generate Makefile, then
make & make install

� Replace default Makefile rules with Perl module
rules

� If necessary, use DEB_MAKER_USER_FLAGS to pass
flags to the Makefile.PL script

control for Python Packages

� Architecture: all
� Section: python
� Package: python-something

� Foo � python-foo
� PyBar � python-pybar

Build-Dependencies
� python all dev� � Build files for all Python versions

� python central� Compiles modules automatically
Continued...

� Build system is Distutils

� Python modules are interpreted, so arch is �all�
� Should probably go in the �python� section
� To name package, add �python-� before the

module's name
� Important, used by packaging system!

� Build depend on �python�all�dev� &
�python�central�
� python-central auto-magically compiles &

manages Python modules

control for Python Packages

� For the source package, add field:
XS-Python-Version: all

� �current� or specific version(s) can also be used
� For each Python binary package, add field:
XB-Python-Version: ${python:Versions}

Dependencies
� Depends: ${python:Depends}
� Provides: ${python:Provides}

� python-central automatically makes a package of
the module for each version of Python & one
virtual package that installs appropriate version
� Needs extra fields for source & binaries

� Add field to source
XS�Python�Version: all
� If module doesn't work on all Python versions,

use �current� or specify versions instead
� Add field
XB�Python�Version: ${python:Versions} to to
any package that needs to compile Python code

� Depend on �${python:Depends}�
� Python versions from python-central

� Provide �${python:Provides}�
� Makes virtual package

� Uses Distutils build script (usually setup.py) to
build and install
� Modules compiled automatically at install-time

� Before any include lines, set DEB_PYTHON_SYSTEM
to �pycentral�

� Replace default Makefile rules with Python Module
rules
� Python module rules must be after debhelper

rules!

� If the build script isn't named setup.py specify it
with DEB_PYTHON_SETUP_CMD

� If you need to pass arguments to the build script,
you can use DEB_PYTHON_ACTION_ARGS
� Can specify �install� arguments for all

packages and/or individual packages

� The �python-� prefix in a package's name tells
CDBS to treat it as a Python package (compile
modules, etc.)
� However, if you need to make a package that

begins with �python-� but shouldn't be
compiled (like a �-doc� package), use
DEB_PYTHON_PACKAGES_EXCLUDE

control for Ruby Packages

� Architecture: all
� Section: interpreters �

� Package: libsomething-ruby
� Foo � libfoo-ruby
� RubyBar � libbar-ruby

Build-Dependencies
� ruby-pkg-tools Ruby Packaging Tools

� Ruby modules are interpreted, so arch is �all�
� Unlike Python & Perl, Ruby doesn't have its own

section, but many packages are in
�interpreters� section

� To name packages, add �lib� before the module
name and �-ruby� after
� Important, needed by the packaging system!

� Build-depend on ruby-pkg-tools
� Provides Ruby rules
� Depends on ruby & rdoc, no need to add those

control for Ruby Packages

� Make a package for each version of Ruby:
� Package: libsomething-ruby1.8

� Depends: libruby1.8
� Package: libsomething-ruby1.9

� Depends: libruby 1.9
� Make a �dummy� package

� Package: libsomething-ruby
� Depends: libsomething-ruby1.8
� Add a blank line and this text to the Description:
 This is a dummy package depending on the library for the current default
 version of Ruby.

� Unlike Python modules, Ruby modules currently
have no helper to automatically generate
packages for each version of Ruby
� Must be done manually, but it's not difficult

� Write a package entry for each version of Ruby
� Add Ruby version after the name
� Depend on appropriate version of libruby &

any modules used
� All should have the same description

� Write a package entry for a �dummy� package
� Makes upgrading much easier
� Depends on package for default Ruby version

� Currently 1.8
� Same description as other packages, but with

blurb about being a dummy package

� If using setup.rb, replace default Makefile rules
with Ruby setup.rb rules

� If using extconf.rb, replace default Makefile
rules with Ruby extconf.rb rules
� Ruby rules must be after debhelper rules!

� If the build script isn't named setup.rb or
extconf.rb, specify it with DEB_RUBY_SETUP_CMD
� Predecessor of setup.rb was install.rb, can

be used with setup.rb rules

� If you need to pass arguments to the build script's
configuration step, you can use
DEB_RUBY_CONFIG_ARGS
� Older install.rb used --site-ruby instead of
--siteruby

� Qmake is build tool for Qt (but not KDE) projects
� qmake & other tools found in libqt*-dev

� Qt 3 & Qt 4 are incompatible & need different
packages
� Debian uses the �alternatives� system to allow

both to be installed at the same time
� Use update-alternatives to make sure all Qt

tools are set to the appropriate version

� Binary packages should depend on corresponding
Qt libraries

� Based on Makefile rules
� Runs qmake to generate Makefile, then make &
make install

� Replace default Makefile rules with qmake rules

� Qmake projects often don't have �install� rule,
in which case file would need to be moved to
DEB_DESTDIR manually

control for KDE Packages

� Section: kde

Build-Dependencies
� Same build-dependencies of Autotools rules
� kdelibs4-dev Headers for KDE Libraries
� Possibly -dev packages for KDE modules

Dependencies
� If possible, depend on individual KDE

applications instead of whole KDE modules

� Should probably go in the �kde� section

� Uses Autotools, similar build-depends from
Autotools rules are needed

� Always build-depend on kdelibs4-dev
� If your package needs specific features from a

KDE module (ie. kdebase, kdepim, etc.), build-
depend on corresponding -dev package (ie.
kdebase-dev, kdepim-dev, etc.)

� Unless you need the whole KDE module, depend
only on the applications you need
� �konsole� instead of �kdebase�

� Extends Autotools rules with various settings &
actions needed by KDE applications

� Replace default Autotools rules with KDE

� unsermake is used by some KDE applications but
doesn't work with CDBS, so if you see errors
about it during build, remove the unsermake
package & try again

� Use a very simple repository on your machine to
keep your packages organized using APT
� Make a directory, preferably under /srv or
/usr/local, so it won't be modified by Debian

� Copy all packages there
� Run dpkg-scanpackages like above, pipe its

output through gzip, and into Packages.gz
� Re-run dpkg-scanpackages whenever the

contents of the repository change
� Add the repository to sources.list
� Update APT

� Can be shared with other machines using HTTP,
FTP, SSH, or any mountable filesystem
� For more advanced setups, try debarchiver,
mini-dinstall, or reprepro

More Information

� Debian Documentation
� General & User Information

� Debian Project Documentation doc-debian
� The Debian Free Software Guidelines are a part of the Debian

GNU/Linux Social Contract
� Debian Reference debian-reference

� Developer Information
� CDBS documentation found in /usr/share/doc/cdbs
� Debian New Maintainers' Guide maint-guide
� Debian Policy Manual debian-policy
� Debian Developer's Reference

developers reference�

� DDP: www.debian.org/doc/
� doc-debian: info about The Debian Project

� The Debian Linux Manifesto
� Constitution for the Debian Project
� "Social Contract" with the Free Software Community

� Contains Debian Free Software Guidelines
� The Debian GNU/Linux FAQ
� Debian Bug Tracking System documentation
� Introduction to the Debian mailing lists

� debian-reference: �broad overview of the
Debian system� (They really mean broad!)

� CDBS docs in cdbs package
� maint-guide: in-depth guide to creating

packages & getting them into Debian archive
� debian-policy: design & policies of Debian's

OS, package standard, archive, etc.
� developers-reference: compendium of

procedures & resources for Debian Developers

More Information

� Documentation about other examples
� Perl

� Debian Perl Policy debian-policy
� Python

� Debian Python Policy
� Debian Wiki: DebianPython/NewPolicy
� python-central HOWTO

� Ruby
� Debian/Ruby Extras Team: Ruby Package Tools
� Ruby Policy (Draft) ruby

